٨

• BharatiyaVidyaBhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

Re- Exam (Old)

June.- 2018

Max. Marks:100 Class: T.Y. B.Tech. (Electrical) Semester: V Name of the Course: Electromagnetic fields and waves Duration: **3.00 Hrs** Program: **Electrical Engineering** Course Code :

Instructions:

- 1. Question No 1 is compulsory.
- 2. Attempt any four questions out of remaining six.
- 3. Draw neat diagrams
- 4. Assume suitable data if necessary

Que.		Max.	CO	Mod.
No		Marks	No.	No.
Q1 (a)	Define with an example	05	1	01
	1. Line integral			
	2. Surface integral			
<u> </u>	3. Volume integral			
(b)	Explain the term:	05	1	01
	1. The gradient of scaler fields			
	2. The divergence of a vector fields			
	3. The curl of a vector fields			
(b)	Explain the term "Electrical field intensity". Derive expression for electric field intensity for an infinite line of charge	10	1	02
Q.2(a)	Use the spherical coordinates system to find the area of the strip	05	01	01
	$\alpha \leq \theta \leq \beta$ on spherical radius 'a'. What results when $\alpha = 0$ and β			
	$=\pi$?			
(b)	Explain the term potential gradient and establish the relation $\overline{E} = -\overline{\nabla V}$.	05	01	02
(c)	Given, $\overline{D} = D_m Cos(\omega t + \beta z)\overline{a_x}$ in free space. Find E, B and H.	05	02	05
(1)	Sketch E and H at t=0		0.1	
(d)	Derive the work done in moving a point charge in an electric field.	05	01	02
Q3(a)	Derive Poisson's and Laplace's equation.	08	02	04
(b)	Identical charges of $Q(C)$ are located at the eight corners of a cube	06	01	02
	with side of <i>lmeter</i> show that coulombs force on each charge has			
	magnitude $\left(\frac{3.29Q^2}{4\pi\epsilon_0 l^2}\right)N$.			
	$\operatorname{magnitude}_{4\pi\epsilon_0 l^2} \mathcal{N}$			
(c)	Explain the following term :	06	01	01
	i) Cylindrical co-ordinate system	0.1		
	ii) Spherical co-ordinate system			
Q4 (a)	Use Ampere's law to obtain H due to an infinitely long straight filament of current I.	05	02	04

(b)	Find the force on straight conductor of length 0.30 m carrying a current of 5A in the $-\bar{a}_z$ direction where the field is $\cdot 3.50 \times 10^{-3}(\bar{a}_x - \bar{a}_y) T$	05	01	03
(c)	Find the work done in moving a point charge $Q = -20 \ \mu C$ from origin to (4,2,0) m in the field $E = 2(x + 4y)a_z + 8xa_y (V/m)$ Along the path $x^2 = 8y$.	05	01	02
(d)	Derive steady magnetic field laws 1. Biot savarts law 2. Amperes circuital law	05	03	07
Q5 (a)	The volume in cylindrical coordinates between $r = 2m$ and $r = 4m$ contains a uniform charge density $\binom{C}{m^2}$. Use Gauss's law to find D in all regions.	05	01	02
(b)	Starting with Ampere's circuital law, derive Maxwell's equation in integral form. Obtain the corresponding relation by applying the Stoke's theorem.	10	02	03
(c)	Find the voltage across each dielectric in the capacitor shown in Fig. 2 when the applied voltage is 400 V. 1 m^2 3 mm Fig. 2	05	02	02
Q.6(a)	State Maxwell's equation for static fields. Explain how they are modified for time varying electric and magnetic fields.	10	1,2	05
(b)	Find the capacitance of co-axial cable of length 'l', where inner conductor has radius 'a' and the outer conductor has radius 'b' (refer fig. 3) Fig. 3	05	02	04
(c)	Show that $\bar{A}.\bar{B} = A_x B_x + A_y B_y + A_z B_z$	05	01	01
Q.7 (a)	State and prove Poynting theorem and give its physical interpretation.	10	01	06
(b)	Derive an expression for potential energy stored in static electric field of n point charges.	10	01	02

BharatiyaVidyaBhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

Re- Exam (New)

June.- 2018

Max. Marks:100 Class: T.Y. B.Tech. (Electrical) Semester: V Name of the Course: Electromagnetic fields and waves

Duration: 3.00 Hrs Program: Electrical Engineering Course Code : BTE301

Instructions:

- Question No 1 is compulsory. 1.
- Attempt any four questions out of remaining six. 2.
- 3. Draw neat diagrams
- 4. Assume suitable data if necessary

Que.		Max.	CO	Mod.
No		Marks	No.	No.
Q1 (a)	Derive an expression for magnetic field intensity due to a linear conductor of infinite length carrying current I at a distance, point P. Assume R to be the distance between conductor and point P. Use Biot-Savart's Law.	10	1	03
(b)	Explain the term "Electrical field intensity". Derive expression for electric field intensity for an infinite line of charge	10	1	02
Q.2(a)	Use the spherical coordinates system to find the area of the strip $\alpha \le \theta \le \beta$ on spherical radius 'a'. What results when $\alpha = 0$ and $\beta = \pi$?	05	01	01
(b)	Current in the inner and outer conductors of fig.1 are uniformly distributed. Use Ampere circuital law to derive expression of magnetic field intensity (H) for $b \le r \le c$	05	01	03
	Fig.: 1			
(c)	Given, $\overline{D} = D_m Cos(\omega t + \beta z)\overline{a_x}$ in free space. Find E, B and H. Sketch E and H at t=0	05	02	05
(d)	Derive the work done in moving a point charge in an electric field.	05	01	02
Q3(a)	Derive Poisson's and Laplace's equation.	08	02	04
(b)	Identical charges of $Q(C)$ are located at the eight corners of a cube with side of <i>lmeter</i> show that coulombs force on each charge has magnitude $\left(\frac{3.29Q^2}{4\pi\epsilon_0 l^2}\right)N$.	06	01	02
(c)	Explain the following term : i) Cylindrical co-ordinate system ii) Spherical co-ordinate system	06	01	01

Q4 (a)	Use Ampere's law to obtain H due to an infinitely long straight filament of current I.	05	02	04
(b)	Find the force on straight conductor of length 0.30 m carrying a current of 5A in the $-\bar{a}_z$ direction where the field is $3.50 \times 10^{-3}(\bar{a}_x - \bar{a}_y) T$	05	01	03
(c)	Find the work done in moving a point charge $Q = -20 \ \mu C$ from origin to (4,2,0) m in the field	05	01	02
	$E = 2(x + 4y)a_z + 8xa_y (V/m)$ Along the path $x^2 = 8y$.			
(d)	Explain FEM method. How to find capacitance of two parallel plate capacitor using FEM technique?	05	03	07
Q5 (a)	The volume in cylindrical coordinates between $r = 2m$ and $r = 4m$ contains a uniform charge density $\binom{C}{m^2}$. Use Gauss's law to find D in all regions.	05	01	02
(b)	Starting with Ampere's circuital law, derive Maxwell's equation in integral form. Obtain the corresponding relation by applying the Stoke's theorem.	10	02	03
(c)	Find the voltage across each dielectric in the capacitor shown in Fig. 2 when the applied voltage is 400 V. $I m^2$ 3 mm	05	02	02
	Fig. 2			
Q.6(a)	State Maxwell's equation for static fields. Explain how they are modified for time varying electric and magnetic fields.	10	1,2	05
(b)	Show that $\bar{A}.\bar{B} = A_x B_x + A_y B_y + A_z B_z$	05	01	01
(c)	Find the capacitance of co-axial cable of length 'l', where inner conductor has radius 'a' and the outer conductor has radius 'b' (refer fig. 3)	05	02	04
	Fig.: 3			
Q.7 (a)	State and prove Poynting theorem and give its physical interpretation.	10	01	06
(b)	Derive an expression for potential energy stored in static electric field of n point charges.	10	01	02

Bharatiya Vidya Bhavan's Sardar Patel College of Engineering (A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058. ODD SEM REXAMINATION

JUNE 2018

Max. Marks: 100 Class: T.Y. (Electrical) Semester: ₩ 12 Name of the Course: ELECTRICAL MACHINES II

Duration: 3 Hr. Program: B.Tech Course Code: BTE 303


Instructions: Please answer any 5 out of 7. Please write to the point answer and elaborate wherever is required.

Q. No	Questions	Max Marks
Q1)	a) Explain the working of Shaded pole Induction motor. Also give its applications in detail.	10
	b) Derive the expression for the power developed in a cylindrical rotor synchronous motor in terms of load angle & synchronous impedance.	10
Q2)	a) Explain the 'Blondel's two reaction Theory for salient pole synchronous generator. Draw the phasor diagram for lagging load power factor and also derive the equation for EMF induced.	10
	 b) A 3 phase, star connected, 400V, 50 Hz, 4 pole Induction motor has the following per phase constants in ohms referred to stator: r1 = 0.15, X1 = 0.45, r2 = 0.12, X2 = 0.45, Xm = 28.5 Fixed losses = 400W Calculate, 1) Stator current 2) Rotor speed 3) Output torque 4) Efficiency when motor is operated at rated voltage & frequency at a slip 4%. 	10
Q3)	a) Explain the different stepping modes for the stepper motor with proper truth tables.	10
	 b) Explain the development of power circle for a cylindrical rotor synchronous motor. Show that, 1) Zero power circle passes through origin. 2) Efficiency at maximum power output = 50% 	10

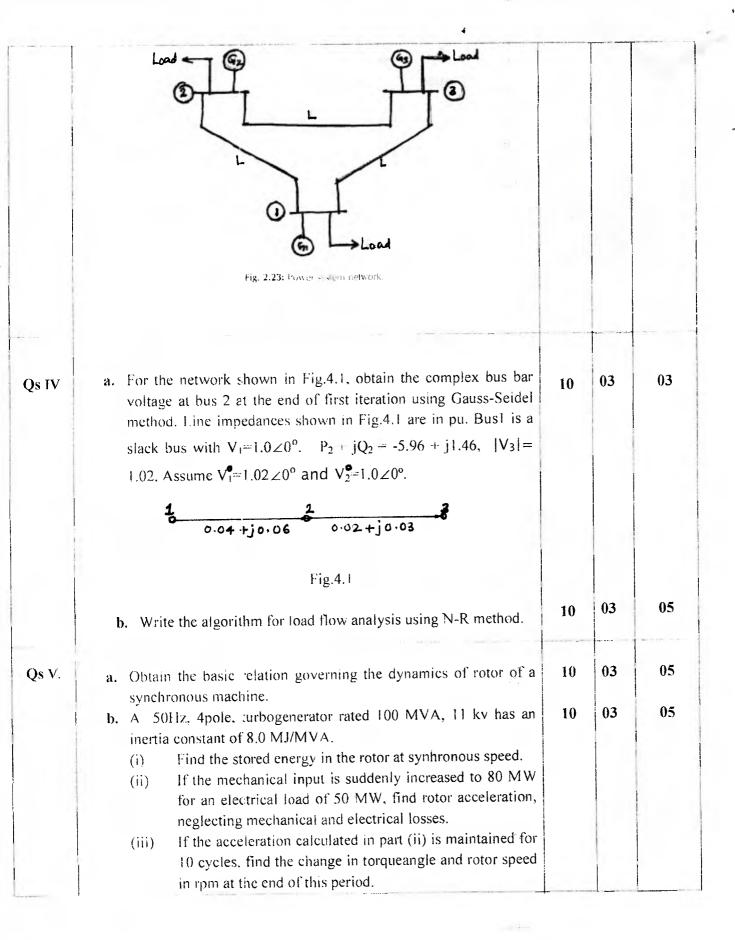
Q4)	a) Explain capacitor start & capacitor run motor in detail	10
	b) A 20 MVA, 3 phase star connected 11 KV, 12 pole, 50 Hz salient	
	pole Synchronous motor with negligible armature resistance has	
	reactance of $Xd = 5\Omega$ and $Xq = 3\Omega$. At full load unity power factor	
	and rated voltage, Calculate,	
	1) The excitation voltage	
	, _	
	2) Power	
	3) Synchronising power per electrical degree and corresponding Torque	
	4) Synchronising power per mechanical degree and corresponding	
	Torque	
Q5)	a) Explain how the excitation and power circles can be superimposed to	10
~ ~)	obtain V curves of a cylindrical rotor synchronous motor. Hence	
	show that,	
	1) Minimum'& maximum currents for any power at unity power	
	factor	
	2) Minimum power factor for any load power occurs when the line	
	current is tangent to the power circle for that load.	
	b) The speed regulation of two 500 KW alternators A & B running in	10
	parallel are 100% to 104% and 100% to 105% from full load to no	
	load respectively. How will the two alternators share a load of 800	
	KW and also find the load at which one machine ceases to supply any	
	portion of the load	
	portion of the load.	
	a) Why Synchronous motor is not self starting. Discuss any one method	10
Q6)	of starting the motor	
	b) Explain the working of variable Reluctance motor and also explain	10
	the driver circuit to control it.	
	÷	20
Q7)	Write short notes on Any two	20
	1) Crawling and cogging	
	2) Split phase Induction Motor	
	3) Stepper motor	

•

١

Bharatiya Vidya Bhavan's Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar. Andheri (West), Mumbai – 400058


KT EXAMINATION June 2018

Program TTY. B.Tech. Electrical Engineering.	Semester I V
Course code . BTE 304	
Name of the Course .POWER SYSTEM ANAL	LYSIS

Duration :01 Hr Maximum Marks : 100

Instructions:

Qs No.	Draw relevant neat circuit diagrams wherever required.	Max. Mark	co	Module No.
Qs I.	 a. What do you understand by symmetrical components and how can it be used in power system analysis? b. Obtain the sequence networks of transmission line and transformers. 	10 10	01	01 01
Qs 11.	a. Write the algorithm for short circuit studies.	• 10	03	02
	b. For a double line-to-ground (LLG) fault through impedance Z^{f} derive the equivalent sequence network diagram and the respective currents.	10	03	02
Qs 111.	a. For a power system network, show that $Y_{bus} = A^T Y A$ Where $Y_{bus} =$ Bus admittance matrix Y = Primittive admittance matrix A Bus incidence matrix.	10	02	03
	b. Consider the power system shown in Fig.2.23. each generator and the line impedence of (0.2+j0.2) pu and (0.5+j0.5) pu respectively. Neglect the line charging admittances.			
	 i) Draw the oriented graph ii) Formulate element-node incidence matrix Â. iii) Obtain the bus incidence matrix, A. iv) Form the bus admittance matrix. Y_{bus} by direct inspection method. 	02 02 01 05	02	03

2/8

Qs V1	 a. Obtain the condition for stability of a power system using Equal area criterion. b. Explain the proceedure to determine the stability of a multimachine system using poin-by-point solution of swing 	10	03 03	06 06
)s VII	 equation. Explain any two from the following: a. Bewley Lattice diagram. b. Compre of De-coupled and Fast De-coupled method of Load flow analysis. c. Factors affecting transient stability. 	10 10 10	04 02 03	07 04 06

•

э.

4

•

Bharatiya Vidya Bhavan's Sardar Patel College of Engineering (Govt. Aided Autonomous Institute under University of Mumbai)

Academic Year 2017 – 18 Re-Examination [June 2018]

Program: B. Tech. Electrical **Course:** Digital Signal Processing **Total Marks:** 100 Class: T. Y. Sem. V Course Code: BTE305 Date: 7th June 2018

Note: Solve any FIVE questions of the following. All questions carry equal marks.

-	ue. Io.	Question	CO No. / Mod. No,	Points
1	a	Design a Butterworth digital IIR highpass filter using bilinear transformation by taking T = 0.5 sec, to satisfy following specifications: $0.707 \le H(e^{j\omega}) \le 1.0$; $0.65\pi \le \omega \le \pi$ $ H(e^{j\omega}) \le 0.2$; $0 \le \omega \le 0.45\pi$	3/7	(10)
	b	Design an analog lowpass filter using inverse Chebyshev approximation to meet following specifications: $A_p \leq 1 \ dB$ for $\Omega_p \leq 4 \ rad/s$ and $A_s \geq 20 \ dB$ for $\Omega_s \geq 8 \ rad/s$.	3/7	(10)
2	a	Determine 8-point DFT of the sequence $x(n) = \{2, 1, 2, 1, 1, 2, 1, 2\}$ using radix-2 DIT FFT algorithm.	2/4	(10)
	b	Determine IDFT of the following sequence: $X(k) = \{7, -0.707 - j0.707, -j, 0.707 - j0.707, 1, 0.707 + j0.707, j, -0.707 + j0.707\}$	2/4	(10)
3	a	Using Hanning Window Function, design a sixth order linear phase FIR lowpass filter having cutoff frequency of $\frac{\pi}{4}$ rad.	3/6	(10)
	 	Using frequency sampling method determine the coefficients and draw realization diagram of a linear-phase FIR filter of length 15 which has a symmetric unit sample response and a frequency response that satisfies the condition, $H\left(\frac{2\pi k}{15}\right) = \begin{cases} 1, & k = 0, 1, 2, 3\\ 0.4, & k = 4\\ 0, & k = 5, 6, 7 \end{cases}$	3/6	(10)

4	а	Design an equivalent digital filter from an analog filter $H(s) = \frac{1}{s^2 + \sqrt{2s+1}}$ using	3/7	(10)
		impulse invariance method. Assume $T = 1$ sec.		
	b	Derive the bilinear z-transformation mapping of s-plane poles and zeros into z-plane poles and zeros. Discuss the advantages and drawbacks of this mapping.	3/7	(10)
5	a	The sequence $x(n) = 4\delta(n) + 3\delta(n-1) + 2\delta(n-2) + \delta(n-3)$ has 8 - point DFT	2/3	(10)
		$X(k)$. Determine the sequence $y(n)$ that has 8 – point DFT $Y(K) = W_8^{4k}X(K)$ and sequence $w(n)$ that has 8 – point DFT $W(K) = 0.5 [X(K) + X(-K)]$.		
	Ь	Using DFT based approach, determine circular convolution of following sequences: $x_1(n) = \{1, 2, 3, 4\}$ and $x_2(n) = \{1, 2, 3, 2\}$. [Note: Calculate DFT using DIT FFT and IDFT using DIF FFT algorithm.]	1, 2 / 3, 1	(10)
6	a	Determine and sketch the magnitude and phase response of the system given below: y(n) = x(n) + 0.9x(n-2) - 0.4y(n-2). [Note: Plot the magnitude and phase response on a graph paper only.]	1/ 1, 2	(10)
	b	A linear phase FIR filter has transfer function $H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$. Determine response of this filter to the input, $x(n) = \delta(n) + \delta(n-1) - \delta(n-3) - \delta(n-4)$ using circular convolution approach.	2/3	(10)
7	a	Determine the transfer function and sketch poles and zeros of an LTI system described by the equation, $y(n) = x(n) + 0.8x(n-1) + 0.8x(n-2) - 0.49y(n-2)$. Comment on the stability of this system.	3/6	(10)
	b	Discuss symmetry properties of DFT for a signal with following cases: <i>i</i> . real (even and odd) and <i>ii</i> . purely imaginary (even and odd).	3/7	(10)